PI Fridlind—Combining observations and CRM simulations to constrain aerosol-cloud interactions

median (line) and inner half (shaded) of C-POL retrievals

1.2 1.4 1.6

Median D₀ (mm)

1.8

 $Median N_w (mm^{-1} m^{-3})$

3.5

3.0

0.8

1.0

- 5.0 CONVECTIVE Z = 2.5 km

 4.5 4.0 c a b

 3.0 1.2 1.4 1.6 1.8 2.0 Median D₀ (mm)

 lines of constant LWC
- 5.0 CONVECTIVE Z = 2.5 km

 4.5 V

 4.0 DT

 3.0

 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Median D₀ (mm)
- **Project description:** develop and evaluate CRM-simulated deep convection case studies using ASR field IOPs (aerosol, hydrometeor, thermodynamic, and surface obs) and satellite observations (TWP-ICE, MC3E)
- Recent findings (TWP-ICE convective raindrop size distribution properties)
 - CRM can reproduce observed increase of raindrop D₀ with greater aerosol numbers, the trend does not require ice processes, and the absolute value of RSD properties is dependent on microphysics scheme
 - near-surface approach to raindrop break-up equilibrium in strong rain (condition independent of aerosol)
 - but observations indicate that CRM updrafts are too large and too strong, indicating an incorrect "updraft regime" (collaboration with Varble, Collis, PI Zipser)